

Euler Angle Rotation $R_Z(\alpha)R_Y(\beta)R_X(\gamma)$

$\begin{bmatrix} c\alpha \\ s\alpha \\ 0 \end{bmatrix}$	$-s\alpha$ $c\alpha$ 0	$\begin{bmatrix} 0\\0\\1 \end{bmatrix} \begin{bmatrix} c\beta\\0\\-s\beta \end{bmatrix}$	0 1 0	$ \begin{array}{c} s\beta\\ 0\\ c\beta \end{array} \begin{bmatrix} 1\\ 0\\ 0\\ 0 \end{array} $	0 cγ sγ	$\begin{bmatrix} 0 \\ -s\gamma \\ c\gamma \end{bmatrix}$	Basic rotation matrices
[cα.c sα.c _sμ	β cα β sα 3	$s\beta .s\gamma - sc$ $.s\beta .s\gamma + cc$ $c\beta .s\gamma$	α.c; α.c;	γ ca.sβ γ sa.sβ	8.cγ + 8.cγ - cβ.c	+ sα.sγ - cα.sγ γ	

Inverse Problem

• Determine $\alpha \beta \gamma$ from the rotation matrix

$${}^{A}_{B}R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} c\alpha.c\beta & c\alpha.s\beta.s\gamma - s\alpha.c\gamma & c\alpha.s\beta.c\gamma + s\alpha.s\gamma \\ s\alpha.c\beta & s\alpha.s\beta.s\gamma + c\alpha.c\gamma & s\alpha.s\beta.c\gamma - c\alpha.s\gamma \\ -s\beta & c\beta.s\gamma & c\beta.c\gamma \end{bmatrix}$$
$$cos\beta = c\beta = \sqrt{r_{11}^{2} + r_{21}^{2}} \\ sin\beta = s\beta = -r_{31} \end{bmatrix} \rightarrow \beta = A \tan 2(-r_{31}, \sqrt{r_{11}^{2} + r_{21}^{2}})$$
if $c\beta = 0$ ($\beta = \pm 90^{\circ}$) \Rightarrow Singularity of the representation

Singular Configurations (β =90°)

8

6

Singular Configurations

- World War 1 Vintage biplane : the gunner controls azimuth and elevation (2dof) to target enemy planes
- **Guiding question**: At which of the two elevations 25° and 80°, is targeting enemy plane easier?
- **Guiding question**: What about the targeting capability of the mechanism when the enemy plane is at 90° elevation? How many effective dofs are there at 90° elevation?

Euler Parameters

Normality Condition

|W| = 1, $\varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2 + \varepsilon_4^2 = 1$

 ε : point on a unit hypershpere in four-dimensional space

Q. Determine the Euler parameters for the following rotation

Direction Cosine Representation

 ${}^{A}_{B}R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.5 & -0.87 \\ 0 & 0.87 & 0.5 \end{pmatrix}$

Euler Parameter Representation

11

$${}^{A}_{B}\mathbf{E} = \begin{pmatrix} 0.5\\0\\0\\0.87 \end{pmatrix}$$

Euler Parameters / Euler Angles

$$\varepsilon_{1} = \sin \frac{\beta}{2} \cos \frac{\alpha - \gamma}{2}$$
$$\varepsilon_{2} = \sin \frac{\beta}{2} \sin \frac{\alpha - \gamma}{2}$$
$$\varepsilon_{3} = \cos \frac{\beta}{2} \sin \frac{\alpha + \gamma}{2}$$
$$\varepsilon_{4} = \cos \frac{\beta}{2} \cos \frac{\alpha + \gamma}{2}$$

12

10

Inverse Problem Given ${}^{A}_{B}R$ find ε

 $\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \equiv \begin{bmatrix} 1 - 2\varepsilon_2^2 - 2\varepsilon_3^2 & 2(\varepsilon_1\varepsilon_2 - \varepsilon_3\varepsilon_4) & 2(\varepsilon_1\varepsilon_3 + \varepsilon_2\varepsilon_4) \\ 2(\varepsilon_1\varepsilon_2 + \varepsilon_3\varepsilon_4) & 1 - 2\varepsilon_1^2 - 2\varepsilon_3^2 & 2(\varepsilon_2\varepsilon_3 - \varepsilon_1\varepsilon_4) \\ 2(\varepsilon_1\varepsilon_3 - \varepsilon_2\varepsilon_4) & 2(\varepsilon_2\varepsilon_3 + \varepsilon_1\varepsilon_4) & 1 - 2\varepsilon_1^2 - 2\varepsilon_2^2 \end{bmatrix}$

$$r_{11} + r_{22} + r_{33} = 3 - 4(\varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2)$$
$$(1 - \varepsilon_4^2)$$
$$\varepsilon_4 = \frac{1}{2}\sqrt{1 + r_{11} + r_{22} + r_{33}}$$
$$\varepsilon_1 = \frac{r_{32} - r_{23}}{4\varepsilon_4}, \quad \varepsilon_2 = \frac{r_{13} - r_{31}}{4\varepsilon_4}, \quad \varepsilon_3 = \frac{r_{21} - r_{12}}{4\varepsilon_4}$$
$$\underline{\varepsilon_4 = 0?}$$

13

15

Lemma For all rotations one of the
Euler Parameters is greater than
or equal to 1/2
$$\left(\sum_{1}^{4} \varepsilon_{i}^{2} = 1\right)$$

Algorithm Solve with respect to $\max_{i} \left\{\varepsilon_{i}\right\}$
• $\varepsilon_{1} = \max_{i} \left\{\varepsilon_{i}\right\}$
 $\varepsilon_{1} = \frac{1}{2}\sqrt{r_{11} - r_{22} - r_{33} + 1}$
 $\varepsilon_{2} = \frac{(r_{21} + r_{12})}{4\varepsilon_{1}}, \quad \varepsilon_{3} = \frac{(r_{31} + r_{13})}{4\varepsilon_{1}}, \quad \varepsilon_{4} = \frac{(r_{32} - r_{23})}{4\varepsilon_{1}}$

• $\varepsilon_{2} = \max_{i} \{ \varepsilon_{i} \}$ $\varepsilon_{2} = \frac{1}{2} \sqrt{-r_{11} + r_{22} - r_{33} + 1}$ • $\varepsilon_{3} = \max_{i} \{ \varepsilon_{i} \}$ $\varepsilon_{3} = \frac{1}{2} \sqrt{-r_{11} - r_{22} + r_{33} + 1}$ • $\varepsilon_{4} = \max_{i} \{ \varepsilon_{i} \}$ $\varepsilon_{4} = \frac{1}{2} \sqrt{1 + r_{11} + r_{22} + r_{33}}$